Updates: Single Spin Asymmetries in UPC

Exclusive ρ^0 photo-production Run 15 pAu $\sqrt{s_N} = 200$ GeV

Daniel Torres Valladares Rice University

23/04/2025

Feedback from Previous Session

- Roman Pot plots had no minimum plane requirement, which could lead to background contamination.
- Consider replicating the asymmetry signal by pairing random events as a control test.
- Double counting when computing the cross-ratio. \bullet
- Noted inconsistency between two results:
 - Cross-ratio method indicates **left/right** asymmetry
 - 2-bin method suggests **up/down** asymmetry
- Suggestion to add more plots for the cross-ratio method to study asymmetry scaling with P_T . Interpretations of having a parity-odd observable for Single Spin Asymmetries.

Roman Pots Tracks

After requiring that each track have hits in at least 7 planes of the Roman Pots, we observe that all tracks disappear — indicating that the Roman Pot tracks were purely background contamination.

RP West 10⁷ racks 1.40725e+08 Entries 40 2.594 Mean x 10⁶ 0.03601 Mean v 35 Std Dev x 5.618 10⁵ 0.7814 Std Dev y 30 10⁴ 25 20 10³ 15 10² 10 10 50 25 30 35 40 45 15 20 10

RP East vs West

RP East vs West

RP East

"Scanning

The A_N^{ran} was made by generating a random number (-1, +1) using a **Bernoulli distribution**, and then computing the asymmetry.

$$A_{N}^{\mathsf{ran}} = \frac{1}{P} \frac{N_{+1} - N_{-1}}{N}$$

The $A_N \perp$ to Spin axis is described as follows: $\frac{N_{\rightarrow} - N_{\leftarrow}}{N_{\rightarrow} - N_{\leftarrow}}$ Where

$$\sigma_{\rightarrow} = N((\overrightarrow{P}_{T}^{\pi\pi} \times \vec{S}) \cdot \hat{x} > 0)$$

$$\sigma_{\leftarrow} = N((\overrightarrow{P}_{T}^{\pi\pi} \times \vec{S}) \cdot \hat{x} < 0)$$

In the direction perpendicular to the spin direction we do not expect to see any asymmetries.

We can also observe an asymmetry $3\sigma_{A_N}$ above zero at $E_{\gamma} = \hbar c / r_p \sim 250 \,\text{MeV}$ which corresponds to the coherent interaction transverse momentum regime regime.

$P_{T}^{\pi\pi}$ Scanning

In the second iteration, we observe some variability in A_N for the first three P_T cuts, likely due to the low number of events in those bins. $N(P_T < 0.05) \approx 100,$ $N(P_T < 0.10) \approx 200,$ $N(P_T < 0.15) \approx 500,$ But for $P_T > 0.2$ we have N > 1000 and results consistent with zero up to 1σ are observed.

0.5 0.6 P_T (GeV/c)

Cross-Ratio for different $P_T^{\pi\pi}$

7

Transverse Single Spin Asymmetry $A_{N}(\phi)$

Using the cross-ratio method:

$$A_{N}^{\mathsf{raw}}\cos\phi_{s} = \frac{1}{P} \frac{\sqrt{N^{\uparrow}(\phi_{s})N^{\downarrow}(\phi_{s}+\pi)} - \sqrt{N^{\downarrow}(\phi_{s})N^{\uparrow}(\phi_{s})}}{\sqrt{N^{\uparrow}(\phi_{s})N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi_{s})N^{\uparrow}(\phi_{s})}}$$

where ϕ_s is the angle between the spin direction and the transverse momentum of the ρ^0 ; $N^{\uparrow,\downarrow}$ represent the yields for the two different spin patterns. We observe an asymmetry that matches with our previous result.

Cross-Ratio for different $P_T^{\pi\pi}$

Measuring P-odd in γp^{T}

Lansberg et al. (2018) proposed the following observable for SSA in UPC:

$$A_N^{\gamma} = \frac{\frac{1}{2m_N} (1+\xi) |\vec{\Delta}_T| \sin(\phi_{\vec{\Delta}}) \,\mathfrak{S}(H_g E_g^*)}{(1-\xi^2) |H_g|^2 + \frac{\xi^4}{1-\xi^2} |E_g|^2 - 2\xi^2 \Re(H_g E_g^*)}$$

which is a parity-odd observable due to the factor $\frac{1}{2}(s_x\Delta_y - s_y\Delta_x) = \frac{1}{2}|\Delta_T|\sin(\phi_{\overrightarrow{\Delta}}) \text{ in the numerator.}$

The derivation, performed within the Generalized Parton **Distribution (GPD)** framework using collinear factorization in QCD, does not rely on any assumption of parity-violating interactions.

LHC and in the Collider Mode at RHIC." Physics Letters B 793 (June 10, 2019): 33-40. https://doi.org/10.1016/j.physletb.2019.03.061.

Lansberg, J. P., L. Massacrier, L. Szymanowski, and J. Wagner. "Single-Transverse-Spin Asymmetries in Exclusive Photo-Production of J/ψ in Ultra-Peripheral Collisions in the Fixed-Target Mode at the

Conclusions

- Roman Pots are empty though out the events of interest.
- No asymmetry can be distinguished for $P_T > 0.2$ GeV/c when pairing random events.
- Fixed error code that was causing inconsistency between the 2-bin and cross-ratio method.
- Double counting when applying the cross-ratio method was fixed.

Trigger Topology in the Exclusive ρ^0 Region

The observed topology is consistent with exclusive ρ^0 meson photo-production in ultra-peripheral p+Au collisions. We see a clean $\pi^+\pi^-$ pair with minimal additional activity: both BBC and ZDC signals are near zero, indicating no nuclear breakup (**0nXn**), and Roman Pot detectors show no significant forward proton activity. This suggests a coherent, exclusive process with no additional particle production, as expected for ρ^0 production via photon exchange.

Characterization $\int_{0}^{\infty} \rho^{0}$ peak

Clear \(\rho^0\) peak
Define region of interest \(m_{\pi\pi} \in (0.65, 0.90)\) \GeV/c\)
\(E_T^{\gamma} = \hbar c/r_p \simeq 250\) MeV for coherent process only.
Photon-Proton center of mass energy: \(W_{\gamma p} \approx \sqrt{2M_{\rho^0}E_p}e^{-y/2} \rightarrow \left{W_{\gamma p}} \rightarrow = 8.87 \GeV\)
For \(\left{P_T}\) = 0.18 \GeV/c\)

30

 $M_{\pi\pi}$ Differential Plots

 $\pi^+\pi^-$ mass distribution (0 < P₁($\pi^+\pi^-$) < 0.25 GeV/c)

$P_{T}^{\pi\pi}$ Differential Plots

 $P_T^{\pi\pi}$ distribution (0.65 < $M_{\pi\pi}$ < 0.9 GeV/c²)

The A_N asymmetry seems to be enhanced around

$$\begin{split} &\Delta = p - p' \\ &\xi = \frac{M_{\psi}}{2W\gamma p - M_{\psi}} \\ &\mathcal{H}^g(\xi, t) \int_{-1}^1 dx T_g(x, \xi) H^g(x, \xi, t) \\ &\mathcal{H}^g(\xi, t) \int_{-1}^1 dx T_g(x, \xi) E^g(x, \xi, t) \\ &\mathcal{H}^g(\xi, t) \int_{-1}^1 dx T_g(x, \xi) E^g(x, \xi, t) \\ &T_g(x, \xi) = \frac{\alpha(\mu_R)\xi}{(x - \xi + i\epsilon)(x + \xi - i\epsilon)} \end{split}$$

LHC and in the Collider Mode at RHIC." Physics Letters B 793 (June 10, 2019): 33-40. https://doi.org/10.1016/j.physletb.2019.03.061.

A_N^{γ} variables

Lansberg, J. P., L. Massacrier, L. Szymanowski, and J. Wagner. "Single-Transverse-Spin Asymmetries in Exclusive Photo-Production of J/ψ in Ultra-Peripheral Collisions in the Fixed-Target Mode at the

